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Inverse design of triblock Janus spheres for
self-assembly of complex structures in the
crystallization slot via digital alchemy†

Luis Y. Rivera-Rivera, ‡
a Timothy C. Moore ‡

a and Sharon C. Glotzer *ab

The digital alchemy framework is an extended ensemble simulation technique that incorporates particle

attributes as thermodynamic variables, enabling the inverse design of colloidal particles for desired

behavior. Here, we extend the digital alchemy framework for the inverse design of patchy spheres that

self-assemble into target crystal structures. To constrain the potentials to non-trivial solutions, we

conduct digital alchemy simulations with constant second virial coefficient. We optimize the size, range,

and strength of patchy interactions in model triblock Janus spheres to self-assemble the 2D kagome

and snub square lattices and the 3D pyrochlore lattice, and demonstrate self-assembly of all three target

structures with the designed models. The particles designed for the kagome and snub square lattices

assemble into high quality clusters of their target structures, while competition from similar polymorphs

lower the yield of the pyrochlore assemblies. We find that the alchemically designed potentials do not

always match physical intuition, illustrating the ability of the method to find nontrivial solutions to the

optimization problem. We identify a window of second virial coefficients that result in self-assembly of

the target structures, analogous to the crystallization slot in protein crystallization.

1. Introduction

Patchy particles—colloidal nanoparticles with short-ranged,

directional interactions—have been the focus of much experi-

mental, computational, and theoretical research over the past

two decades.1–4 Attractive patches produce directional interac-

tions between particles, which influence local valence and, in

turn, self-assembly behavior. Therefore, judicious design of

patch patterns is critical to self-assembling target colloidal

crystals and other superstructures from patchy particles. For

example, particles can be designed that self-assemble into open

structures,5–8 and these patchy interactions are often simpler

(e.g., smoother functional form and without an excessive number

of wells) to achieve both computationally and experimentally

than isotropic but oscillatory pair potentials that also self-

assemble open structures.9–12 New techniques in patchy particle

synthesis are making ever more complex patch patterns

possible,13,14 bringing ever closer the promise of patchy particles

for colloidal matter on demand. However, the high degree of

tailorability of patchy particles is a double-edged sword. On the

one hand, the many possible anisotropy dimensions15 allow, at

least in principle, almost any arbitrary particles to be designed;

on the other hand, this enormous design space cannot be

systematically studied, and efficient means of exploring this

space are needed to design particles with useful assembly

behavior.16 Inverse design methods offer a promising approach

by starting with a target structure or behavior and seeking

points or regions of the design space that give the desired

target. For the self-assembly of patchy particles into colloidal

crystal structures, inverse design methods attempt to answer the

question ‘‘what attributes of the patchy interactions lead to the

self-assembly of a target crystal structure?’’ Generally, these

attributes can include the number, size, shape, arrangement,

and interaction range of the attractive patches, in addition to

the shape of the particle core.

To date, most inverse methods design isotropic pair

potentials.9–11,17–34 Considerably less work has focused on the

inverse design of anisotropic energetic interactions, including

patchy particles.35–43 Many of those methods rely on high

specificity between patchy interactions, which can result in

complicated, or even nonphysical, interaction matrices.37,44

The digital alchemy framework (DAF),45 in contrast, is general

and therefore particularly attractive for the inverse design of

arbitrary patchy particles. Digital alchemy extends standard

statistical mechanical ensembles (e.g. NVT, NPT, etc.. . .) to
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include designable particle attributes. The DAF treats parametriz-

able anisotropy dimensions or other particle interaction attri-

butes as thermodynamic variables, which therefore relax to and

fluctuate about equilibrium values. To date, digital alchemy has

been used as an inverse design method for the shape of hard

polyhedra45–49 and for isotropic pair potentials.33,45,50,51 Particles

of arbitrary shape or isotropic interaction potentials, respectively,

are initialized in the target crystal structure, and the particle

shape or potential parameters are relaxed towards values that

minimize the free energy of the system in the target structure.

Here, we extend the DAF to patchy particles. In contrast to

the inverse design of hard particle shapes, which lack an energy

scale, the inverse design of particles with explicit, patchy

interactions that contribute to the potential energy presents a

unique challenge for the DAF. The directionality afforded by the

patches allows interactions that match the coordination of the

crystal structure, but can also lead to a trivial ground state

solution by making those ‘‘valence’’ interactions of infinite

strength, which will dominate the free energy by making

thermal fluctuations irrelevant. Potentials designed in this way

do not offer useful guidance for designing self-assembling

systems. Therefore, constraints on the possible solutions are

needed. Previous work using digital alchemy for the inverse

design of isotropic pair potentials used a constraint specific to

the form of the pair potential.33 Here, we take a more general

approach. Motivated by the ‘‘crystallization slot’’ observed in the

solidification of globular proteins,52 we constrain the system to

have a constant second virial coefficient B2 during the alchem-

ical simulations; doing so ensures we avoid the trivial solution

of optimizing for the ground state while promoting solutions

that may be in the sweet spot for crystallization. Owing to the

generality of the DAF, sampling alchemical variables that corre-

spond to a constant B2 constraint is straightforward, allowing us

to explore the concept of a colloidal crystallization slot.

The second virial coefficient B2 is the coefficient of the first

order correction to the ideal gas law in the virial expansion of the

equation of state.53 Because of its form, B2 provides a quantitative

measure of pairwise interactions between particles: large,

negative (positive) values are indicative of strong net attractive

(repulsive) pairwise interactions. For particles with a single axis of

rotational symmetry like those that are the focus of the current

work, B2 is defined as53

B2 � � 1

2V

1

ð4pÞ2
ð

e�bU � 1
� �

dr1dr2dq1dq2; (1)

where V is the volume, b � 1/kBT is the inverse temperature, U is

the potential energy, and qi and ri represent the orientational and

translational degrees of freedom, respectively, of particle i. We

work with the normalized second virial coefficient b2, defined as

b2 = B2/B
HS
2 where BHS

2 = 2ps3/3 is the second virial coefficient of a

system of hard spheres (HS) with diameter s.

The second virial coefficient is widely used as a predictor of

thermodynamic quantities such as the vapor–liquid critical

point,54 and as an extended law of corresponding states for

colloidal and protein suspensions,55,56 is indicative of viscosity

in antibody solutions,57 and most relevant for this work, is a

predictor of protein crystallization propensity.52 George and

Wilson52 were the first to report on the correlation between b2
and crystallization propensity for aqueous solutions of globular

proteins, showing that water soluble, globular proteins crystal-

lize at experimental conditions that yield b2 values within the

relatively narrow range of �10 t b2 t �1, named the ‘‘crystal-

lization slot’’. Similar crystallization slots have been uncovered

for different groups of proteins,58–63 and a similar concept has

also been proposed for colloidal suspensions,56,64 but has thus

far received far less attention than for protein solutions. Although

a system at conditions within the crystallization slot is not

guaranteed to crystallize,62,65,66 nor is crystallization exclusively

restricted to conditions within the slot, the crystallization slot

concept remains an important guide for exploring the high-

dimensional space of parameters that influence crystal yield.

In this work, we leverage the crystallization slot concept and

employ b2 as a constraint in alchemical simulations to design

patchy particles that self-assemble target crystal structures

using triblock Janus spheres as an example model. Triblock

Janus spheres are particles whose surfaces contain three distinct

regions of different chemical coatings, resulting in orientation-

dependent interparticle interactions.67 Experimentally, triblock

Janus particles are often synthesized to have hard-sphere-like

interactions between equatorial bands and attractive inter-

actions between polar regions of the particles, which can be

either symmetric or asymmetric in size and location on the

particle surface.5,67

The rest of the paper is organized as follows: in Section 2, we

describe the particle model that we employ and the implementation

of the b2-constrained digital alchemy-based inverse design method

to optimize the interactions of the particle model for the self-

assembly of selected crystal structures. In Section 3, we present

the designed particle interactions and self-assembly results for three

distinct crystal structures: the kagome and snub square lattices in

two dimensions, and the pyrochlore lattice in three dimensions.

Finally, in section 4, we conclude with suggestions for future work.

2. Model and methods
2.1 Triblock Janus sphere model

We model triblock Janus spheres using the Kern–Frenkel (KF)

potential,68 illustrated in Fig. 1. Particles have a hard sphere of

Fig. 1 (a) Triblock Janus spheres interacting via the Kern–Frenkel

potential. Particles within the range of interaction (s o |rij| r ls) interact

only if the patches are facing each other (i.e., if the vector joining the

center of the particles intersects both patches, as in (a). (b and c) Kagome

and pyrochlore motifs formed by triblock Janus spheres with symmetric

patches in 2D and 3D, respectively. (d) The snub square motif, which

contains an asymmetric valence around each particle, suggesting a need

for patches of unequal size.
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diameter s with an attractive, circular patch on each pole. The

location of patch k on particle i is denoted by an orientational

director nk
i that extends from the center of the particle to the

center of the patch, where k A {1, 2} for the triblock Janus

particles studied in this work. Patch sizes are quantified by an

aperture angle yki so the total opening angle of each patch is

2yi
k. In general, the patches need not be the same size.

We denote the position of the center of particle i by ri, and

we adhere to the convention that the vector rij points from the

center of particle i to the center of particle j, giving rij = rj � ri, with

magnitude rij = |rij|, and unit vector r̂ij = rij/rij. Following these

conventions, we write the KF potential as UKF = USW(rij) f (r̂ij, n
l
i, n

m
j ).

The first factor is the isotropic square-well (SW) potential that

depends only on the distance between the particles and is given by

USWðrÞ ¼

1 r � s

�be so r � ls

0 otherwise

8

>

>

>

<

>

>

>

:

(2)

where b = 1/kBT with kB the Boltzmann constant and T the

temperature, e is the well depth corresponding to the strength of

the interaction and l is the range of the interaction, related to the

width of the well d by l � 1 + d/s. The parameters e and s set the

energy and length scales in our simulations. The anisotropy of the

pair potential is accounted for via the orientational masking

function f, defined as

f ðr̂ij ; nli ; nmj Þ ¼
1 patches aligned

0 otherwise

(

(3)

where the patch alignment condition is r̂ij�nli 4 cos(yl) 4 r̂ji�nmj 4

cos(ym) for any patch l on particle i and any patch m on particle j.

The simplicity of the KF model makes it amenable to theoretical

treatment, including an analytical solution to eqn (1) that

results in

b2ðw; l; eÞ �
BKF
2 ðw; l; e; sÞ
BHS
2 ðsÞ ¼ 1� w2ðl3 � 1Þðeþbe � 1Þ (4)

where w = w1 + w2 is the total fraction of surface covered by all the

patches and wk = sin2(yk/2) is the contribution of each patch with

aperture angle yk.

We treat the interaction potential attributes a = (w,l,e) as

alchemical variables. These alchemical variables have conjugate

alchemical potentials, m(a), that encode the system’s response to

changes in the alchemical variables. The alchemical variables

are allowed to fluctuate subject to the constraint b2(w,l,e) = b02, a

predefined constant. This scheme defines a holonomic con-

straint on the surface of constant b2 of the form F(w,l,e) =

b2(w,l,e) � b02 = 0. In the next section we describe our simulation

protocol and how we enforce this constraint.

2.2 Implementation of digital alchemy for patchy interactions

and simulation protocol

We implemented the alchemical Monte Carlo (MC) method

within the hard particle MC (HPMC) module of the HOOMD-

blue simulation engine69,70 and used the runtime-compiled

code to compute the energetic interactions defined in eqn (2)

and (3). We performed one alchemical trial move for each

conventional translational and rotational MCmove. Alchemical

trial moves consist of proposing a randomly selected displace-

ment on F from a1 to a2. To do this we implemented a variation

of the surface diffusion algorithm described elsewhere,71 with

the surface F(w,l,e) = 0 defined above, and with the distinction

that we impose additional constraints on the extrema of a

motivated by geometrical considerations. Specifically, we set

lmin = 1.01 and lmax = 2, and wmin = 0.001 and wmax = 0.8264,

which correspond to ymin E 2.51 and ymax E 801. The chosen

range of l spans interactions extending over very short distances

to distances well beyond the first neighbor shell of most

structures and densities of interest. Similarly, the chosen range

of y allows the formation of multiple bonds per patch commen-

surate with the valence of the target structures, while avoiding

overlap between patches on the same particle. We automatically

rejected trial moves that resulted in a value of a outside of these

limits. Otherwise, moves were accepted or rejected based on a

generalized Metropolis criterion, P1-2 = min{1,e�b(U(a2)�U(a1))}.

We tuned the sizes of the translational, rotational, and alchem-

ical steps to achieve an acceptance probability of B40%.

We chose target b02 values in the range �40 r b02 r 0, which

spans the colloidal crystallization slot we identified in the

literature, but also extends to more negative values to test the

validity of the colloidal crystallization slot. For each b02, we ran

120 independent alchemical simulations with different initial a

on a roughly uniform grid. We placed the particles in an external

harmonic field that restrains their positions and orientations to

the ideal Einstein crystal for the first few steps of a run. This

initial setup allows the alchemical degrees of freedom to relax

towards values that are optimal for the target structure before the

structure has a chance to fall apart. We ran the optimization

simulations for 500 � 103 total MC sweeps, linearly decreasing

the strength of the harmonic field to zero over the first 200 �
103 steps. We ran the final 300 � 103 MC sweeps without the

harmonic restraints, but b02 always remained constant.

We labeled each optimization run as successful or failed

based on the stability of the target structure as follows. We first

used the EnvironmentMotifMatch module of the freud analysis

library72 to determine which particles have a local coordination

that is similar to that in the target structure.73 We used a

threshold of 0.2 for the environment matching calculation,

chosen via visual inspection. We labeled a run as successful if

at least 90% of the particles remained in environments that

resemble the target structure, and failed otherwise.

We also used EnvironmentMotifMatch to analyze the self-

assembled structures by quantifying the fraction of particles U

that have local environments that resemble the target structure:

U = Nmatch/Ntotal where Nmatch is the number of particles with a

local coordination similar to that of the target structure and

Ntotal is the total number of particles in the system. We note

that because the particles self-assemble into finite crystallites,

particles at the boundary are undercoordinated relative to the

reference motifs used in the EnvironmentMotifMatch analysis,

and therefore do not register as crystal-like, lowering U.
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In the next section we present DAF-designed particles

obtained from the b2-constrained alchemical MC optimization

scheme applied to triblock Janus spheres to assemble kagome,

pyrochlore and snub square structures. We validate the resulting

designs by performing self-assembly simulations and observing

assembly from the fluid into the target structures. The self-

assembly simulations were performed using MC but without

any alchemical moves.

3. Results and discussion
3.1 Kagome design: triblock Janus spheres in 2D

We designed kagome structures at crystal phase densities

(i.e., area or volume fraction in 2D and 3D, respectively) of

ftarget A {0.5,0.6}. At these densities, the minimum interaction

range required to form a bond between particles in the first

coordination shell is l E 1.0647 and l = 1.166, respectively.

These l values also correspond to the locations of the first peak

in the radial distribution function (RDF) in the ideal crystal at

those densities. We began by placing 507 particles in the ideal

kagome lattice at the target density and followed the protocol

described in the previous section.

Fig. 2a shows the alchemical optimization paths of a subset

of the 120 initial points (black crosses) in alchemical space

distributed on a roughly uniform grid of the b02 = �4 surface, at

ftarget = 0.6. Out of the 120 initial points, 87 (72.5%) meet the

success criterion at the end of the simulations. Successful

optimization paths are indicated by solid lines while dashed

lines indicate simulations where the optimization algorithm

failed to obtain a solution within the desired design space (e.g., the

initial target structure melted partially or completely or transi-

tioned into a hexagonal lattice). Most of the failed optimization

paths end on, or close to, the extrema boundaries imposed on the

alchemical variables.

All successful paths converge to the single point a = (371,

1.12, 5.8), which we deem the optimal parameters a* and

denote with a star in Fig. 2a. In contrast, previous inverse

design work using digital alchemy to optimize isotropic pair

potentials found multiple solutions for a given target crystal

structure.33 We obtained a* by computing the ‘‘time’’ average of

each patch parameter over the final 100 � 103 MC steps and

then averaging all individual time averages across all successful

runs. Notably, this combination of (y*,l*) corresponding to a*

is well within the range of the two-bond-per-patch condition

given by ð2lÞ�1 � sin yo
ffiffiffi

3
p

ð2lÞ�1 arising from purely geome-

trical considerations (see Fig. S3, ESI†). This result showcases

the ability of our approach to produce results that are consistent

with intuition in simple cases. In addition, the width of the

optimal interaction range d*/s = l* � 1 = 0.12 is approximately

twice as large as the minimum interaction width required to

form a bond between particles in the first coordination shell, d/s

E 0.0647. This result is consistent with the fact that the KF

potential is a square-well potential, and therefore the vibrational

entropy is maximized when all particles are in the middle of the

interaction range of their neighbors.74

Fig. 2c shows a summary of the optimal alchemical para-

meters for triblock Janus spheres in a kagome lattice as a

function of b02 and ftarget. From this figure we see that the

Fig. 2 Patch alchemy results for the kagome lattice. (a) The surface of constant b02 = �4, showing the initial (black crosses) and final (black dots)

alchemical simulation points and the paths between them on the design space. For clarity, only 25% of the initial points are displayed. Paths that yield

stable kagome lattices are labeled ‘‘success’’ and those that don’t are labeled ‘‘failed’’. (b–d) The evolution of the alchemical parameters during the

optimizations for systems with b02 = �4 at f = 0.6, colored the same as (a). (e–g) The optimized values of the alchemical parameters as a function of b02
and f after identifying stable clusters on the b2 surface. Filled markers indicate optimized solutions with U Z 50% (see Model and methods) in self-

assembly simulations.
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optimal patch aperture angle y and interaction range l remain

constant with b02 for a given ftarget, while e increases as b02
becomes more negative. The target density has a negligible

effect on y since y is mostly controlled by the valence of the

target structure. The largest effect of ftarget is on the interaction

range l, which is expected for the KF potential since it is this

interaction range that ultimately determines the lattice con-

stant of the resulting crystal and therefore its crystal phase

density. At ftarget = 0.5, the width of the optimized potential

with l* = 1.28 (d = 0.28) is approximately 1.7 times that of the

minimum potential required to form bonds in the ideal crystal

at the same density, which is consistent with the aforemen-

tioned design rule and entropy maximization principle.

To validate our alchemy results, we performed three indepen-

dent self-assembly simulation replicas for all the combinations of

(b02, ftarget) for which we successfully obtained optimal values of

(y*, l*, e*). We started each simulation with a random con-

figuration of N = 1200 particles at an area fraction of f = 0.3. We

chose more dilute systems for assembly compared to the

optimization simulations (i.e., the density of the optimization

simulations was the target crystal density ftarget) to minimize

the effect of the periodic boundary conditions used in the assem-

bly simulations. Because systems of the inversely designed parti-

cles have negative b2 values, they will spontaneously aggregate

without an external pressure and can therefore form finite aggre-

gates that do not span the simulation box. As indicated in

Fig. 2e–g, we find an increased assembly propensity (defined

as systems where Z50% of particles form kagome-like local

environments) for �20 r b02 r �5, qualitatively analogous to

the crystallization slot identified in the protein crystallization

community.

Fig. 3 shows the self-assembly results corresponding to the

design parameters obtained from the alchemical simulations

shown in Fig. 2a–d (e.g., b02 = �4 and ftarget = 0.6). Fig. 3a shows

the final snapshot of one of the replicas; visual inspection

clearly reveals that the local environment of most particles

matches the typical X-like motif of the kagome lattice

(Fig. 1b). Fig. 3b shows the evolution of the intensive potential

energy bU/N and crystal yield U (see Model and methods). We

observed a crystal yield of U E 85% in all three replicas.

We further characterized the final structures by computing the

RDFs, shown in Fig. 3c. The vertical dashed black lines correspond

to the peak locations of the ideal kagome lattice atf = 0.6. The radial

axis is normalized by the location of the first peak in the RDF for the

potential optimized at ftarget = 0.6, which is r0 E 1.056 in this

particular case. Note that this value roughly corresponds to the

midpoint of the width of the potential (1 + l)/2 = 1.06 and is in

good agreement with the location of the first peak of the RDF of

the ideal lattice, at the same density as discussed above. More-

over, we highlight the fact that the RDFs of the systems

simulated with the model optimized at ftarget = 0.5 have peaks

whose locations are scaled in the r-direction by a factor of

appproximately
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

0:6=0:5
p

� 1:1. Hence, the self-assembled

crystals seem to locally adopt ftarget, even at much more dilute

state points, and ftarget therefore serves as a handle to control

the lattice spacing of the self-assembled crystals.

Fig. 3 Self-assembly results for the kagome lattice with a* = (371, 1.12, 5.8) obtained from alchemical simulations at b02 = �4 and ftarget = 0.60 (Fig. 2a).

(a) Snapshot of the last simulation frame showing the self-assembled kagome lattice. (b) Progression of the intensive potential energy bU/N and crystal

yield U (see Model and methods). (c) RDFs of the assembled kagome structures for (b02, ftarget) = (�4, 0.6) and (�9,0.5); the vertical dashed lines represent

the RDF of the ideal kagome lattice. In all cases, the radial axis is normalized by the location of the first peak of the assembled structure at ftarget = 0.6,

given by r0 E 1.056. The relative locations of the peaks in the assembled structure are in very good agreement with those of the ideal crystal. The RDFs

were computed over the final 2 � 106 MC sweeps of the assembly simulations.
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3.2 Pyrochlore design: triblock Janus particles in 3D

We next apply the b2-constrained digital alchemy methodology

to design a colloidal system to self-assemble a pyrochlore lattice

at crystal densities of ftarget = 0.25 and ftarget = 0.35. In this case

we initialized 432 particles in the ideal pyrochlore structure

and followed the same protocol as for kagome. The colloidal

pyrochlore (or cubic tetrastack) crystal is one of the few 3D

structures known to have a complete photonic band gap and is

also a stable phase of triblock Janus particles interacting via the

KF potential.74 Fig. 4a shows a subset of the alchemical

optimization paths for b02 = �9 and ftarget = 0.34. Unlike for

the kagome structure where we observed a single optimal point

on the b2 surface, here we observe two candidate optimal points

on the b2 surface: a1 = (441, 1.06, 6.6) and a2 = (681, 1.85, 1.7)

with 60 and 14 converging paths, respectively. The former

candidate optimal design point is well within the range of

values of previously studied KF phase diagrams.8,74 Although

the available phase diagrams of triblock Janus spheres do

not extend enough to include the latter point,8,74 it can be

unambiguously located in the fluid region of these by a simple

visual interpolation. Furthermore, self-assembly simulations

confirm this conclusion (i.e., no stable clusters form in assem-

bly simulations using patchy interactions corresponding to a2).

Therefore, pyrochlore is a metastable phase for the system at a2,

and we discard a2 as a solution to the optimization problem.

Contrary to the kagome case study, where the (y*, l*)

combination allowed a maximum number of bonds that is

commensurate with the valence of the structure, the combi-

nation of (y*, l*) obtained in the pyrochlore optimization is

slightly above the four-bonds-per-patch lower limit, despite the

coordination of the lattice containing three bonds per patch.

In the next section we explore the implications of this counter-

intuitive result. The width of the optimal interaction range

d*/s = l* � 1 = 0.06 is approximately twice as large as the

minimum interaction width required to form a bond between

particles in the first coordination shell at the target ftarget,

d/s E 0.0288, which is in agreement with the kagome results

and with the vibrational entropy maximization design rule

discussed in the previous section.

Fig. 4e–g shows a summary of the optimal alchemical

parameters as a function of b02 and ftarget. Here, we confirm the

design rule trends established in the previous case study. First,

we see that the optimal patch aperture angle y and interaction

range l remain approximately constant with b02 for a given ftarget,

while e increases as b02 becomes more negative. As before, the

target crystal phase density has a negligible effect on y but has a

large effect on the interaction range l.

As for the kagome lattice, we performed self-assembly simu-

lations for all the combinations of (b02, ftarget) for which we

obtained optimal a. We initialized the simulations with random

configurations at f = 0.1 to minimize the effect of pressure on

the assembly. Fig. 5 shows the self-assembly results corres-

ponding to the design parameters obtained from the alchemical

simulations shown in Fig. 4a and b (e.g., b02 = �9 and ftarget =

0.34). Fig. 5a shows a snapshot of a subset of all the particles in

the system forming a crystalline grain. In this case, U E 43%

(Fig. 5b, red line). We attribute the relatively lower value of

U (compared to the kagome results) to polymorphism, i.e., the

presence of a competing structure with a similar free energy to

the target pyrochlore lattice. Pyrochlore has a closely related

hexagonal polymorph, the hexagonal tetrastack (HT), with iden-

tical valence (six neighbors, three above and three below like

Fig. 4 Patch alchemy results for the pyrochlore lattice. (a) The surface of constant b02 = �9, showing initial points as black crosses, final points as black

dots, and the path each optimization takes on the surface as lines. Failed optimizations are drawn as dashed lines, while successful optimizations are

drawn as solid lines. (b–d) The evolution of the alchemical parameters during optimization, coloring the same as in (a). (e–g) The optimized values of the

alchemical parameters as a function of b02. Notice the patch width and range remain nearly constant as a function of b02.
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pyrochlore), but with an ‘‘eclipsed’’ configuration instead of the

‘‘staggered’’ one shown in Fig. 1c. The bimodal distribution

of the Steinhardt bond orientational order parameter q6
75,76

indicates that motifs of both polymorphs are present in

the self-assembled crystallite (Fig. 5a, inset). Both the ideal

pyrochlore and HT structures exhibit a peak at q6 = 0.741.77,78

However, the latter exhibits an extra smaller peak at q6 =

0.411.77,78 The presence of peaks around these values indicates

a mixture of the two polymorphs. While the problem of poly-

morph selection is beyond the scope of the current work, we

hypothesize it could be addressed by adding additional alchem-

ical degrees of freedom to allow fluctuations in the patch

geometries and arrangement, or by adding repulsive patches that

disfavor the unwanted polymorph through negative design.79 For

example, Romano and Sciortino41 showed how the shape of

patches can be made to favor one polymorph over another, so

one may imagine making the shape of the patches an alchemical

degree of freedom to aid in polymorph selection. Similar con-

siderations arise in designing patchy particles to assemble cubic

diamond, where cubic and hexagonal polymorphs often compete

with each other.37,39,40,80

3.3 Snub square design: triblock Janus spheres with

asymmetric patches

The kagome and pyrochlore examples illustrate the design of

triblock Janus particles with symmetric patches (equal-size

aperture angles) in 2D and 3D, respectively. To demonstrate the

applicability of our method to more complex crystal structures,

we now relax the equal-size patch constraint to allow both patch

sizes to fluctuate individually while still subject to the b2 con-

straint. For this purpose, eqn (1) is easily generalized to account

for asymmetric patch sizes, resulting in b2 = 1 � (w1 + w2)
2(l3 �

1)(ebe � 1) where wi = sin2(yi/2) is the surface fraction covered by

each of the patches.

We use this approach to design triblock Janus spheres that

minimize the free energy of a snub square lattice at a crystal area

fraction of ftarget = 0.59. The snub square lattice has been

demonstrated to be a stable phase of soft patchy particle

models,81 binary mixtures of hard patchy polygons,82 non-

additive square-well particles,83 isotropic interaction potentials

in a single component system9,28 and in several experimental

systems.84–87 This lattice therefore makes an ideal candidate for a

stress test of our algorithm, since the neighbors in the coordina-

tion shells surrounding each particle have an asymmetric spatial

distribution (3 on one pole and 2 on the opposite pole, see

Fig. 1d). This asymmetric valence distribution strongly suggests

the need for unequal patch sizes on each pole to stabilize the

structure. However, the snub square crystal structure is fairly

complex, with an 8-particle unit cell and 4 unique particle

orientations, so it is unclear a priori whether or not it is an

equilibrium phase of any triblock Janus sphere model or whether

or not such particles can self-assemble into the structure.

Fig. 5 Self-assembly results for the pyrochlore lattice with a* = (441, 1.06, 6.6) obtained from alchemical simulations at b02 = �9 and ftarget = 0.34

(Fig. 4a). (a) Snapshot of a crystalline grain showing the assembled pyrochlore lattice. For clarity, patches are not drawn and particle sizes are rendered

with a radius of s/2. Bonds are drawn between the particles in the first neighbor shell. Inset: Distribution of per-particle Steinhardt bond orientational

order parameter q6 in the final self-assembled configuration. (b) Progression of the intensive potential energy bU/N and crystal yield U (see Model and

methods). The lower value of U, as compared to the kagome assembly, is attributed to polymorphism. (c) The radial distribution function of the

assembled pyrochlore (blue) compared with the ideal pyrochlore (dashed black lines). The radial axis is normalized by the location of the first peak of the

assembled structure, r0 E1.013. The relative locations of the peaks in the assembled structure are in relatively good agreement with those of the ideal

crystal.
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With the exception of having an additional alchemical

degree of freedom, the optimization procedure is equivalent

to the one used in the kagome and pyrochlore case studies. We

performed the optimizations for systems of 512 particles at

b02 = �19, within the colloidal crystallization slot. The extended

set of optimal parameters a* obtained from alchemical simula-

tions in this case are y�L � 67
	
, y�s � 38

	
, l*E 1.10 and e*E 6.0,

where subcripts L and S refer to the large and small patches,

respectively (see Fig. S3, ESI†). The smaller of the patches, y�s ,

has a size comparable to that obtained for the kagome lattice, as

expected based on the coordination of the kagome and snub

square lattices. This (y�s , l*) combination is well within the

region where a maximum of two-bonds-per-patch are allowed in

2D. The size of the larger patch, however, is larger than the four-

bond-per-patch lower limit (E651) at l* = 1.10 (see Fig. S3, ESI†).

Fig. 6 summarizes the results from a self-assembly simula-

tion with the optimized parameters for snub square assembly.

Fig. 6 shows a configuration from the simulation, where we

observe a high yield of U E 94% (red line in Fig. 6b). The RDF

of the self-assembled crystal, shown in blue in Fig. 6c, is in

excellent agreement with the RDF of the ideal crystal (dashed

black lines). As in Fig. 3 and 5, the radial axis is normalized by

the location of the first peak, which is r0 E 1.0438 for the

assembled crystal. Following the analysis of the kagome and

pyrochlore case studies, it is clear that this r0 is commensurate

with the target crystal density of ftarget = 0.59.

It is counterintuitive that the size of the larger patch is above the

four-bond-per-patch lower limit, especially when considering the fact

that the small patches from this particular optimization, as well as

the small patches in the optimized model for kagome, are well

within the range where a maximum of two bonds per patch are

allowed. Despite this fact, we do not observe any large patches

accommodating more than three bonded neighbors in any of the

assembly simulations of thismodel, which would yield the coordina-

tion of the close-packed crystal structure that is clearly incompatible

with the snub square crystal structure. To test the effect of the

coverage of the larger patch on assembly, we performed additional

self-assembly simulations with yL values in the range 601 r yL r

661, i.e., which spans values where a maximum of three or four

bonds-per-patch are allowed. We observe that a pure snub square

lattice is only obtained when yL is close to or slightly larger than the

minimum aperture required to accommodate four bonds per patch

(see ESI†), with the highest quality crystal obtained from simulations

with the optimized parameters mentioned above. This result is

analogous to a previous result using digital alchemy to optimize

an isotropic Lennard-Jones–Gauss potential to stabilize a square

lattice, where the thermodynamically optimal value did not corre-

spond to the naı̈ve ansatz obtained from pattern registration

between the RDF and the potential.45 This counterintuitive result

illustrates that, in some instances, successful self-assembly can be

promoted with parameters that do not correspond to a naı̈ve

geometrical ansatz, and that the digital alchemy inverse design

framework is capable of finding such nontrivial solutions.

4. Conclusions

In this work, we extended the digital alchemy framework for the

inverse design of particles with anisotropic energetic interactions.

Fig. 6 Self-assembly results for the snub square lattice with a* = (671, 381, 1.1, 6.0) obtained from alchemical simulations at b02 = �19 and ftarget = 0.59.

(a) Snapshot of the final configuration from the simulation showing the assembled snub square lattice. (b) Progression of the intensive potential energy

bU/N and crystal yield U (see Model and methods), showing a final yield of U E 94%. (c) The radial distribution function of the assembled snub square

(blue) compared with the ideal lattice (dashed black lines). The radial axis is normalized by the location of the first peak of the assembled structure, r0 E

1.0438. The relative locations of the peaks in the assembled structure are in very good agreement with those of the ideal crystal.
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To avoid trivial solutions (such as infinitely strong interactions

that match the valency of the target structure), we constrained the

alchemical variables (i.e., the parameters of the interaction

model) to the surface defined by a constant second virial coeffi-

cient (b2) of the potential. This choice of constraint is motivated

by the crystallization slot concept in proteins, whereby a relatively

narrow range of b2 promotes crystallization. Although b2 values

within this slot may be insufficient to promote successful crystal-

lization in some cases due to kinetic limitations, the concept

remains a useful guide for screening the high-dimensional space

of parameters that influence crystal yield. Here, the use of the b2
constraint led to successful design of patchy particles that self-

assemble colloidal crystals in all three example cases studied.

We showed how this approach can be used to design

symmetric triblock Janus spheresmodeled with the Kern–Frenkel

potential to self-assemble technologically relevant structures;

specifically, we designed symmetric triblock Janus spheres to

self-assemble a kagome lattice in 2D and the pyrochlore lattice in

3D. In both cases, we obtained optimal potential parameters a*

that are in good agreement with previous studies of the equili-

brium phase diagram of the Kern–Frenkel potential. In general,

we observe that both the aperture angle y* as well as the

interaction range l* are relatively unaffected by the value of the

b2 constraint. The former is most strongly correlated with

the valency of the target structure, where the surface coverage

of the patch is dictated by how many bonds the patch must

accommodate in the target structure. The latter is most strongly

correlated with the density of the target crystal phase, which is

unsurprising since the range of interaction ultimately determines

the density of the crystal phase; this fact allows tuning of the

lattice spacing of the self-assembled crystal structures.

To demonstrate the broad applicability of our method, we

relaxed the symmetric patch condition and designed the first

Kern–Frenkel model with asymmetric patches that successfully

self-assembles the snub square lattice. The aperture angle of

the smaller patch lies within the two bonds-per-patch limits, as

expected by geometrical considerations alone. However, the

larger patch is slightly above the four-bond-per-patch lower

limit, despite the fact that the coordination of the crystal

structure only requires three bonds per patch for the larger

patch. This result highlights how our method yields results that

are not easily predicted based on intuition and geometric

considerations.

Future work will be aimed at extending our methodology to

more general patchy particle potentials, including those that do

not have a closed-form expression for b2. We do not anticipate

the lack of a closed-form expression for b2 being a limitation as

there are many available numerical methods to efficiently and

accurately compute b2 given its relevance in predicting thermo-

dynamic properties. One particularly exciting future direction is

the design of patchy particles with anisotropic shapes, as

opposed to the spherical shapes used in the present work. Such

work will enable the exploration of a design space with more

anisotropy dimensions15 than current methods allow and there-

fore represents an important step in particle design whereby

energetic patchiness and entropic (shape) patchiness88 can be

tuned simultaneously to offer more precise control over self-

assembling systems.

Finally, we again note that the digital alchemy framework, in

its current form, finds values of the alchemical variables that

minimize the free energy of the target structure at the target

state point. Subsequent self-assembly from a fluid phase is not

guaranteed because the free energy of the fluid phase at the

target state point relative to the free energy of the crystal is not

considered. Additionally, the free energies of polymorphs are

not considered, and competing polymorphs may lower the

assembly yield of the target lattice as we observed for the case

of pyrochlore in the current work. We expect that additional

alchemical degrees of freedom (e.g., the shape of the patches) or

further modifications to the alchemical inverse design frame-

work (e.g., incorporation of negative design strategies37,44,79) will

help resolve these issues; such considerations are the subject of

future work. Regardless, digital alchemy has proven a useful and

reliable approach to patchy particle design.
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Supplementary Information for “Inverse design of triblock Janus spheres for
self-assembly of complex structures in the crystallization slot via digital alchemy”

Luis Y. Rivera-Rivera,a‡ Timothy C. Moore,a‡ and Sharon C. Glotzer∗ab

b2-constrained alchemy with independent patch aperture fluctuations

Figure S1 shows the evolution of the alchemical variables during alchemical simulations where the aperture angles of

the two patches (θ1 and θ2) are allowed to fluctuate independently of one another. For the system biased towards the

kagome lattice (Figure S1a–d), θ1 and θ2 converge to the same value (approximately 37◦) for all successful optimizations,

reflecting the symmetry of the valence of each particle in the kagome lattice. In contrast, for the case of snub square, θ1

and θ2 converge to different values, approximately 67◦ and 38◦. This difference reflects the asymmetric valence around

each particle in the snub square lattice.
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Fig. S1 Alchemical variables as a function of the MC sweeps when the equal-size aperture angle constraint is relaxed for kagome (a-d) at (b2,φtarget) =

(−9,0.5), and snub square (e-h) at (b2,φtarget) = (−19,0.59).
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Snub square design: pattern registration analysis

Figure S2 shows the final snapshot of self-assembly simulations performed with θL = 60◦,62◦,64◦ and 66◦, while keeping

the smaller patch aperture angle fixed at θS = 38◦. The first three values are large enough to accommodate a maximum

of three bonds per patch while the last one is slightly larger than the minimum required to accommodate four bonds per

patch. From these pattern registration considerations alone, we would expect to observe the formation of a high quality

snub-square lattice with the first three values of θL. However, this is not the case. Instead, we observe the formation of

kagome/twisted kagome at θL = 60◦. Slightly increasing the aperture angle to θL = 62◦ results in a snub square/twisted

kagome coexistence. Finally, we observe the assembly of a pure snub square lattice only when θL ∈ {64◦,66◦}, that is,

when θL is close to or slightly larger than the minimum aperture required to accommodate a maximum of four bonds per

patch. We also note that the snub square lattice obtained from the systems with θL ∈ {64◦,66◦} exhibits a considerable

number of defects, whereas the lattice obtained with the optimized parameters is relatively defect free (Figure 6, main

text).
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Fig. S2 Final snapshot of self-assembly simulations at θL = 60◦,62◦,64◦ and 66◦ with fixed θS = 38◦. Here, the upper left symbol θ XS

L
denotes how

much larger θL is above the minimum for three-bonds-per-patch (≈ 52◦) for λ = 1.10.
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Bonds-per-patch analysis

The maximum number of bonds a given patch can form to other bonds is dictated by the aperture angle θ and patchy

interaction range λ . The range of λ and θ values where patches can form at most n bonds is given by

C
(n)
min ≤ λ sinθ <C

(n)
max.

In two-dimensions, (C
(n)
min,C

(n)
max) pairs are given by (0,1/2), (1/2,1/

√
3), and (1/

√
3,1/

√
2) for n = 1, 2, and 3, respectively.

In 3D, these pairs are given by (0,1/2), (1/2,
√

3/2), and (
√

3/2,1) for n = 1, 2, and 3, respectively.
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Fig. S3 The range of patch aperture angles θ that allow a maximum of 1, 2, 3, and 4 bonds per patch as a function of λ for 2D (top) and 3D

(bottom). Optimized parameters for selected structures shown as colored stars.
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